Estimation and filling of missing runoff data at Al-Jawadiyah station using artificial neural networks

نویسندگان

چکیده

Runoff is one of the most important components hydrological cycle, and having complete series runoff data essential for any modelling process. This study aims to estimate at Al-Jawadiyah hydrometric station using artificial neural networks. used only in addition values measured Al-Amiri on Syrian-Lebanese border. Many experiments were conducted a very large number networks trained with changing hidden layers, neurons training algorithms until best network was reached according regression criteria root mean error squares between predicted values, (2:12:1) adopted process filling gaps time during period. recommends working preparing climatic measurements that form basis an accurate model area.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

monthly runoff estimation using artificial neural networks

runoff estimation is one of the main challenges encountered in water and watershed management. spatial and temporal changes of factors which influence runoff due to het-erogeneity of the basins explain the complicacy of relations. artificial neural network (ann) is one of the intelligence techniques which is flexible and doesn’t call for any much physically complex processes. these networks can...

متن کامل

Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)

Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

runoff estimation using artificial neural network method

runoff is one of the major components of calculating water resource processes and is the main issue in hydrology. many concept models are used to predict the amount of runoff, which in most cases depend on topographical and hydrological data. conventional models are not appropriate for areas in which there is little hydrological data. changes in runoff are nonlinear, meaning it is time & space ...

متن کامل

Estimation of Missing Precipitation Records Using Modular Artificial Neural Networks

Estimation of missing precipitation records is one of the important tasks in hydrological study. The completeness of precipitation data leads to more accurate results from the hydrological models. This study proposes the use of modular artificial neural networks to estimate missing monthly rainfall data in the northeast region of Thailand. The simultaneous rainfall data from neighboring control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202126305034